Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomaterials ; 273: 120824, 2021 06.
Article in English | MEDLINE | ID: covidwho-1184843

ABSTRACT

Sponge particulates have attracted enormous attention in biomedical applications for superior properties, including large porosity, elastic deformation, capillary action, and three-dimensional (3D) reaction environment. Especially, the tiny porous structures make sponge particulates a promising platform for drug delivery, tissue engineering, anti-infection, and wound healing by providing abundant reservoirs of broad surface and internal network for cargo shielding and shuttling. To control the sponge-like morphology and improve the diversity of drug loading, some optimized preparation techniques of sponge particulates have been developed, contributing to the simplified preparation process and improved production reproducibility. Bio-functionalized strategies, including target modification, cell membrane camouflage, and hydrogel of sponge particulates have been applied to modulate the properties, improve the performance, and extend the applications. In this review, we highlight the unique physical properties and functions, current manufacturing techniques, and an overview of spongy particulates in biomedical applications, especially in inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity. Moreover, the current challenges and prospects of sponge particulates are discussed rationally, providing an insight into developing vibrant fields of sponge particulates-based biomedicine.


Subject(s)
COVID-19 , Precision Medicine , Drug Delivery Systems , Humans , Porosity , Reproducibility of Results , SARS-CoV-2
2.
Respir Res ; 21(1): 314, 2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-945210

ABSTRACT

BACKGROUND: Previous studies have focused on the clinical characteristics of hospitalized patients with the novel 2019 coronavirus disease (COVID-19). Limited data are available for convalescent patients. This study aimed to evaluate the clinical characteristics of discharged COVID-19 patients. METHODS: In this retrospective study, we extracted data for 134 convalescent patients with COVID-19 in Guizhou Provincial Staff Hospital from February 15 to March 31, 2020. Cases were analyzed on the basis of demographic, clinical, and laboratory data as well as radiological features. RESULTS: Of 134 convalescent patients with COVID-19, 19 (14.2%) were severe cases, while 115 (85.8%) were non-severe cases. The median patient age was 33 years (IQR, 21.8 to 46.3), and the cohort included 69 men and 65 women. Compared with non-severe cases, severe patients were older and had more chronic comorbidities, especially hypertension, diabetes, and thyroid disease (P < 0.05). Leukopenia was present in 32.1% of the convalescent patients and lymphocytopenia was present in 6.7%, both of which were more common in severe patients. 48 (35.8%) of discharged patients had elevated levels of alanine aminotransferase, which was more common in adults than in children (40.2% vs 13.6%, P = 0.018). A normal chest CT was found in 61 (45.5%) patients during rehabilitation. Severe patients had more ground-glass opacity, bilateral patchy shadowing, and fibrosis. No significant differences were observed in the positive rate of IgG and/or IgM antibodies between severe and non-severe patients. CONCLUSION: Leukopenia, lymphopenia, ground-glass opacity, and fibrosis are common in discharged severe COVID-19 patients, and liver injury is common in discharged adult patients. We suggest physicians develop follow-up treatment plans based on the different clinical characteristics of convalescent patients.


Subject(s)
COVID-19/diagnosis , Convalescence , Adult , Antibody Formation , COVID-19/physiopathology , Child , Child, Preschool , China , Comorbidity , Female , Humans , Male , Middle Aged , Patient Discharge , Retrospective Studies , Young Adult
3.
Emerg Microbes Infect ; 9(1): 2020-2029, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-720915

ABSTRACT

COVID-19 is caused by SARS-CoV-2 infection and was initially discovered in Wuhan. This outbreak quickly spread all over China and then to more than 20 other countries. SARS-CoV-2 fluorescent microsphere immunochromatographic test strips were prepared by the combination of time-resolved fluorescence immunoassay with a lateral flow assay. The analytical performance and clinical evaluation of this testing method was done and the clinical significance of the testing method was verified. The LLOD of SARS-CoV-2 antibody IgG and IgM was 0.121U/L and 0.366U/L. The specificity of IgM and IgG strips in healthy people and in patients with non-COVID-19 disease was 94%, 96.72% and 95.50%, 99.49%, respectively; and sensitivity of IgM and IgG strips for patients during treatment and follow-up was 63.02%, 37.61% and 87.28%, 90.17%, respectively. The SARS-CoV-2 antibody test strip can provide rapid, flexible and accurate testing, and is able to meet the clinical requirement for rapid on-site testing of virus. The ability to detect IgM and IgG provided a significant benefit for the detection and prediction of clinical course with COVID-19 patients.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/analysis , Immunoglobulin M/analysis , COVID-19/immunology , Fluorescent Antibody Technique , Humans , SARS-CoV-2/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL